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Abstract Tolerance of salt stress in potato (Solanum

tuberosum L.) increased when the plants were pre-

exposed to low concentrations of salt (salt acclimation).

This acclimation was accompanied by increased levels of

abscisic acid (ABA) in the shoot. To further study the role

of roots and shoots in this acclimation process, reciprocal

grafts were made between a salt-tolerant (9506) and salt-

sensitive ABA(-) mutant and its ABA(+) normal sibling

potato genotype. The grafted plants were acclimated with

75 or 100 mM NaCl for 3 weeks and then exposed to

150–180 mM NaCl, depending on the salt tolerance of the

rootstock. After 2 weeks of exposure to the salt stress, the

acclimated and unacclimated plants were compared for

physiologic and morphologic parameters. The response to

the salt stress was strongly influenced by the rootstock.

The salt-tolerant 9506 rootstock increased the salt toler-

ance of scions of both the ABA-deficient mutant and its

ABA(+) sibling. This salt tolerance induced by the

rootstock was primarily modulated by salt acclimation

and manifested in the scion via increased plant water

content, stem diameter, dry matter accumulation, stomatal

conductivity, and osmotic potential, and is associated with

a reduction in leaf necrosis. There was also a pronounced

scion effect on the rootstock. Using 9506 as a scion

significantly increased root fresh and dry weights, stem

diameter, and root water content of ABA(-) mutant

rootstocks. Specific evidence was found of the role of

exogenous ABA in the enhancement of water status in

grafted plants under salt stress beyond that of grafting

alone. This was verified by more positive stomatal con-

ductivity and upward water flow in ABA-treated grafted

and nongrafted plants and the absence of upward water

flow in nontreated grafted plants through NMR imaging.

Grafting using either salt-tolerant scions or rootstocks

with inherently high ABA levels may positively modify

subsequent responses of the plant under salt stress.
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Introduction

The progressive, natural, and anthropogenic salinization of

arable lands at the rate of 3 ha/min at global levels (FAO

2006) is a major limiting factor in agricultural crop pro-

duction (Parida and Das 2005) and agricultural

sustainability (Waisel 2001). The consumption of potatoes

in Europe and North America (Messer 2000) has been

combined with recent cumulative demand for potato pro-

duction for sustaining food and nutrition security in the

developing world (Pandey and others 2005). Potatoes are

regarded as the fourth most important food crop globally

(CIP 2007). Although halophytic wild types exist in potato

species (Shaterian and others 2005b), most cultivated

potato genotypes are relatively salt sensitive (Katerji and

others 2003), and soil salinity levels as low as 2.3 dS m-1

reduce both growth and tuber yield (Katerji and others

2003). The responses of potato cultivars and wild species

vary following exposure to elevated levels of chloride and
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sulfide, which are the most common salts in saline soils

(FAO 2006). However, relatively little has been reported

on the mechanisms of salinity tolerance of potato.

Although salt shock is uncommon in nature (Maas and

Grattan 1999), most research on salt stress responses

involves a short-term salt exposure on nonacclimated plants.

In nature, plants are typically subjected to a gradual buildup

of salt due to either fertilizer application for crop growth or

increase in salt concentration as water is depleted (Eilers and

others 1995). Adapted plants have an inherent level of

salinity resistance and can significantly increase that resis-

tance during acclimation (Amzallag and Lerner 1995).

Acclimation results from a pre-exposure to low, nonlethal

levels of salt stress which increases the plant’s subsequent

tolerance to higher salt concentrations (Strognov 1964;

Conroy and others 1988; Guy 1990; Matthews and Boyer

1984). Acclimated plants will grow at salt concentrations

that are lethal to nonacclimated plants (Amzallag and others

1990b). For acclimation to occur, the cell, organ, and

organism must be in a proper physiologic state (Amzallag

and Lerner 1995). The capacity for acclimation varies con-

siderably among plant species (Baker and others 1986) and

also varies among genotypes of the same species (Durrant

1981; Amzallag and others 1993; Azevedo Neto and others

2004). Virtually all plant species can acclimate to salt stress

if the stress is imposed gradually (Amzallag and others

1990b; Hasegawa and others 1994). Enhanced salt tolerance

following NaCl pretreatment was observed in bell pepper

(Capsicum annuum L.) (Bethke and Drew 1992), Jojoba

(Simmondsia chinensis) (Ben Raı̈s and others 1993), maize

seedlings (Zea mays) (González-Rodrı́guez and others

1997), rice (Oryza sativa) (Hassanein 2000; Djanaguiraman

and others 2006), soybean (Glycine max) (Umezawa and

others 2000), and cowpea (Vigna unguiculata) (Silveira and

others 1999, 2001).

ABA is a plant hormone involved in coordinating the

growth of roots and shoots of plants (Sharp and LeNoble

2002) and regulating tolerance responses to a number of

stresses, including water and salt (Thomas and Eamus 1999;

Gómez-Cadenaz and others 2003; Shaterian and others

2005a). For example, the negative effect of NaCl salt on

root nodule dry weight of common bean was alleviated by

exogenous ABA supply (Khadri and others 2006, 2007).

ABA contributed to the increase of xylem water potential as

well as water uptake to the plant in the presence of salt

(Fricke and others 2004). Simultaneous exposure of plants

to salinity and ABA treatment resulted in stimulation of

shoot growth at all ABA concentrations compared to plants

exposed only to salinity (Cachorro and others 1995). Fur-

thermore, overproduction of ABA is associated with

increased transpiration efficiency and root hydraulic con-

ductivity and influences leaf expansion (Thompson and

others 2007). Abscisic acid accelerated salt acclimation

(Amzallag and others 1990a), whereas cytokinin (CK) and

gibberellic acid (GA) interfered with this process (Amzal-

lag and others 1992). Recently, Shaterian and others

(2005b) showed the importance of ABA in salt stress

resistance in potato. Exposure to exogenous ABA in the

absence of stress can induce acclimation to various stresses

(salt, water and cold) (Amzallag and Lerner 1995). Fol-

lowing a stress event, ABA content increased within a few

minutes to several hours depending upon the type and

severity of the stress (Cramer and Quarrie 2002; Jia and

others 2002; Liu and others 2003; Fricke and others 2004,

2006).

Several practices in agricultural systems are directed

toward overcoming salinity. Judicious selection of salt-

tolerant genotypes and development of better varieties have

shown merit in some situations via traditional potato genetic

breeding programs (Elkhatib and others 2004; Shaterian and

others 2005b). Gene transformation recently has been used

in developing salt-tolerant genotypes. Salt-tolerant trans-

genic lines expressed substantially more of the transgene

that was generated through genetically engineered potato

(Hmida-Sayari and others 2005; Behnam and others 2006;

Teixeira and others 2006). Transferring desirable properties

of the root of salt-resistant rootstocks to the shoot of salt-

sensitive scions through gene transcription in the root and

action in the shoot is an alternative way of overcoming

salinity by grafting (Pardo and others 1998). This manipu-

lation resulted in intensively increasing cultivation of

grafted vegetable crops in the past few years (Lee and Oda

2003), particularly in Solanaceae plants subjected to salinity

(Fernández-Garcı́a and others 2002; Santa-Cruz and others

2002; Chen and others 2003). Scion/rootstock interactions

can provide useful insights into the mechanisms underlying

plant responses to salt stress (Schmutz and Lüdders 1999;

Fernández-Garcı́a and others 2002; Chen and others 2003;

Estañ and others 2005). These salt-tolerance mechanisms

are usually associated with the plant’s ability to restrict the

uptake and/or transport of toxic ions from the roots to the

shoots (Matsumoto and others 2006).

Grafting is an integrative reciprocal process and therefore

both scion and rootstock influence salt tolerance. When

grafting was used to assess the role of roots and shoots in

regulating salt tolerance in chickpea (Cicer arietinum), the

scions of a sensitive genotype grafted onto a salt-tolerant

rootstock died after exposure to salt stress, whereas tolerant

scions grafted onto sensitive rootstocks remained tolerant of

salinity (Dua 1997). In soybean, both the shoot and the root

have been reported to affect salt tolerance. Velagaleti and

others (1990) suggest that the root is dominant in deter-

mining salinity tolerance of soybean. In addition, the

importance of the root system in regulation of salt stress

tolerance was also documented in salt-sensitive and salt-

tolerant potato genotypes (Shaterian and others 2005a). By
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contrast, Abd-Alla (1998) concluded that shoot factors were

of primary importance in determining salt tolerance of soy-

bean. Schmutz and Lüdders (1999) showed that scions also

play a role in salt tolerance of grafted mango plants. In

tomato genotypes, rootstocks generally regulate accumula-

tion of salt ions in leaves (Santa-Cruz and others 2001, 2002),

but properties of the rootstock that are important in inducing

salt tolerance of the shoot were also dependent on the shoot

genotypes (Santa-Cruz and others 2002). Scion genotypes

played an important role in the growth of grafted tomato

plants regardless of the salinity of the growth media, whereas

rootstock had little influence (Chen and others 2003).

ABA-deficient mutants have been found in a number of

plant species such as tomato (Tal 1967; Tal and Nevo 1973;

Neill and Horgan 1985; Borsani and others 2002), potato

(Quarrie 1982; De Jong and others 2001), pea (Wang and

others 1984; Kof and others 2006), Arabidopsis thaliana

(Koorneef and others 1982; Umezawa and others 2006),

Helianthus annus (Fambrini and others 1995, 2004), vivipa-

rous corn mutants (Smith and others 1978; Robichaud and

others 1980; Suzuki and others 2006), and wheat (Holappa

and others 2005). Reciprocal grafting of ABA-deficient

mutants is a useful method for studying the functions of ABA

(Chen and others 2002a). Grafting studies with tomato iden-

tified a factor in the root of the ABA-deficient mutant (flacca)

that was involved in opening the stomata of the leaves of

scions more than grafts with the normal roots (Tal 1967).

These results also indicated that the shoot genotype was

dominant in determining stomatal aperture (closing/opening),

although grafting onto ABA-normal rootstock could cause a

slight decrease in the stomatal conductance of ABA-deficient

scions (Jones and others 1987). Although ABA-mutant scions

grafted onto ABA-normal rootstocks reverted to a relatively

near-normal phenotype, the ABA-normal scion maintained its

own phenotype on the mutant rootstock (Cornish and Zeevaart

1988). Recently, Shaterian and others (2005b) showed

ABA(+) rootstocks were important in inducing calreticulin

mRNA in the leaves during salt stress.

Nuclear magnetic resonance (NMR) microscopy is a

unique and promising tool in plant science (Ishida and others

2000; Köckenberger and others 2004). Holbrook and others

(2001) were able to monitor the water status of individual

larger xylem vessels of plants like grape (Vitis vinifera). Peuke

and others (2001), in addition to simultaneous measurement of

water flow velocity in xylem and phloem, monitored CO2 and

H2O concentrations in castor bean seedling by using FLASH

imaging capabilities of NMR. Microimaging based on NMR

is an experimental technique that can provide a unique view of

a variety of plant physiologic processes. The location of xylem

and phloem in the stem, the total amount of water, the amount

of stationary and flowing water, the linear velocity of the

flowing water, and the volume flow in cucumber were

examined by flow imaging experiments (Scheenen and others

2002). Water movement in inner and outer xylem in the shoot

and leaf using various NMR spectroscopy and imaging tech-

niques was also studied (Schneider and others 2003).

Recently, Velikanov and Belova (2005) examined the effect

of ABA using NMR imaging. They showed exogenous ABA

affects water permeability of the vacuolar symplast in the root

cells of maize seedlings by increasing water permeability of

the tonoplast.

Despite the global importance of potatoes in developing

and developed countries, the growing significance of salt

stress, the known involvement of ABA in alleviating stress,

and the ability to graft crops like potato, investigations into

ABA and salt stress responses in grafted potato have not

been widely performed. Thus, the objective of this study is

to examine scion and rootstock effects on ABA-mediated

plant growth regulation and salt tolerance of acclimated

and unacclimated potato genotypes.

Materials and Methods

Genotypes Resources

Three diploid potato lines were obtained from Agriculture

and Agri-Food Canada, Fredericton (Dr. H. De Jong). Line

9506 ‘‘Resistant’’ (S. chacoense 9 S. microdontum 9 S.

tuberosum) is salt stress resistant (Shaterian and others

2005b). Line 9120–05 is an ABA(-) mutant [Solanum

tuberosum L. group Phureja (phu)] containing the (dr)

mutant gene (Simmonds 1965). This line is salt sensitive

(Shaterian and others 2005b). Line 9120–18 (Drdr) is the

ABA(+) normal sibling of 9120–05 and is moderately

sensitive to salt (Shaterian and others 2005b). The com-

mercially produced tetraploid potato ‘Norland’ was used as

a comparative in the endogenous ABA experiment.

Grafting

Shoot tip cuttings of the three genotypes were rooted in

Ottawa sand (1–2 mm diameter, 75.5% very coarse sand; 0.5-

1 mm, 24.4% coarse sand; and \0.5 mm, \0.1%). Ottawa

sand has minimal ion-binding capacity, which reduces inter-

ference by ion absorption in salinity or fertility trials. After 5

weeks the rooted cuttings were transferred to 400-ml pots

filled with Ottawa sand. The seedlings were grown in a

greenhouse with 25/20�C day/night temperature, 60–85%

relative humidity, and 600–800 lM s -1 m -2 light intensity

(PhAR) for 14–16 h (combination of natural light and artifi-

cial light provided by high-pressure sodium halogen lamp).

Grafting occurred when the stem attained a length of 15–

20 cm. Attempts to graft at other stages of growth were

unsuccessful. Scions of the ABA(-) mutant and its ABA(+)

normal sibling were grafted onto 9506 resistant rootstocks
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[(ABA(-)/9506] and [(ABA(+)/9506]. Reciprocally, 9506

scions were grafted onto rootstocks of the ABA(-) mutant

or its ABA(+) sibling [9506/ABA(-)] and [9506/

(ABA+)]. A cleft graft was used. The graft unions of the

autografts of the ABA(-) mutant and the ABA(+) sibling

broke a few days after grafting. However, our other

grafting studies on the same plants using autografted

material found significant rootstock effects independent of

an autografting response (Shaterian and others 2005a).

Therefore, nongrafted plants were used as comparative

controls. The scion and rootstock were held together and

protected from desiccation by wrapping with a paraffin-

embedded plastic film (Parafilm, American National Can

Menasha). Newly grafted plants were held in a mist

chamber for two weeks. The plants were irrigated with

water containing 20–20–20 N–P–K plus micronutrients

(Plant Products Co. Ltd., Brampton, Ontario, Canada) three

times a day. To prevent foliar diseases, the plants were

sprayed with fungicide three times per week.

After 6 weeks the grafted plants were transferred to 1.5-l

pots filled with white Ottawa sand. Four pots were used for

each scion/rootstock combination. One pot of each scion/

rootstock combination was placed in a tray (20 9 40 9

60 cm3). Three to five times each day each tray was flooded

for 5 min with a fertilizer solution (1.27 g l –1) (20–20–20

N–P–K plus micronutrients, Plant Products) augmented

with differing amounts of NaCl (see below). The EC and pH

of the nutrient solution was checked weekly. The EC and

pH of the 0–180 mM NaCl treatment solutions ranged

between 1.22–22.16 dS m-1 and 6.52–6.96, respectively.

Sprouts from nodes of the rootstock were continuously

removed to maintain only one grafted scion.

Salt Acclimation Treatment

To determine the effects of salt acclimation on subsequent

salt stress tolerance, graft combinations (scion/rootstock)

were pretreated with low concentrations of NaCl salt

for 3 weeks. Based on previous studies of the salt tolerance

of the rootstocks, the salt acclimation treatments were

as follows: ABA(-), ABA(+), 9506/ABA(-), 9506/

ABA(+) = 25 mM in the first week, 50 mM in the second

week, and 75 mM in the third week. ABA(-)/9506,

ABA(+)/9506, 9506 = 33.3 mM in the first week,

66.6 mM in the second week, and 100 mM in the third week.

Unacclimated Control

To compare the effect of salt acclimation with control,

unacclimated plants received fertilizer nutrient solution

without NaCl salt.

After 3 weeks of salt acclimation, all acclimated and

unacclimated plants were exposed to 2 weeks of salt stress.

On the basis of the salt tolerance of the rootstock, the NaCl salt

concentrations used in the salt stress regimes were ABA(-),

ABA(+), 9506/ABA(-), 9506/ABA(+) = 150 mM and

ABA(-)/9506, ABA(+)/9506, 9506 = 180 mM.

A factorial 7 (graft combinations) 9 2 (salt acclimated)

randomized complete block design (RCBD) with four

replicates and two plants per replicate was used for this

study. Fisher’s protected LSD (P = 0.05) was used for

mean comparisons.

Physiologic parameters evaluated after 2 weeks of

exposure to salt stress were: leaf injury, leaf stomatal con-

ductivity, stem diameter, shoot and root fresh and dry

weights, degree of leaf greenness (chlorophyll content), leaf

water content, leaf osmotic potential, and shoot and root

water contents. Leaf injury was ranked from 1 to 5 (Shaterian

and others 2005b) as follows: 1 = 0% leaf damage, 2 =

1–25% leaf damage, 3 = 26–50% leaf damage, 4 = 51–

75% leaf damage, 5 = 76–100% leaf damage. Leaf injury

ratings were performed on the most recently fully expanded

and the lowest nonwilted leaves. Plant height (stem collar to

shoot tip, apex) was monitored on a weekly basis over the

2 weeks of salt stress to allow calculation of the growth rate:

Growth rate ¼ height at T2� height at T1ð Þ
T2� T1

where T1 is before stress and T2 is after stress. To deter-

mine leaf water content and leaf osmotic potential, tissue

samples were taken from the fourth and fifth fully expan-

ded leaves between 10 and 12 p.m. A Wescor Vapour

Pressure Osmometer model 5000 (Logan, UT) was used to

determine osmotic potential.

A SPAD Meter (model Minolta-502) was used to mea-

sure the degree of leaf greenness (approximates

chlorophyll content) on the same leaf on which necrosis

was measured. Duplicate readings were performed at two

positions. Stem diameter was measured using electronic

digital calipers (model SCM DIGV-6) at 5 cm below and

above the graft union. Stomatal conductivity was measured

using a Steady State Porometer (Li 1600, LI-COR Bio-

sciences, Lincoln, NE) between 9 and 11 a.m after 2 weeks

of salt stress. At the end of the experiment, root and shoot

fresh and dry weights and water content were determined.

ABA Measurements

For ABA measurements, 15–20-g (fresh weight) samples

were collected at the completion of salt stress treatments

between 10 a.m. and 12 p.m. Leaf samples were immedi-

ately frozen in liquid N2, stored at -20�C, and lyophilized

prior to extraction. Approximately 100 mg of samples were

ground with 3 ml of aqueous 80% acetone containing 1%

acetic acid (v/v). The internal standard D3-ABA was added

to each sample at 10 ll (2 ng ml-1). The supernatant was
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dried by stream on a nitrogen evaporator. An Oasis HLB

1cc cartridge (Waters Corp., Milford, MA) was precondi-

tioned with methanol and equilibrated with water under

vacuum. The extract was dissolved in 200 ll 99% metha-

nol (v/v) containing 1% acetic acid and mixed with 800 ll

1% acetic acid (v/v). The supernatant was loaded and

washed with 1 ml water under vacuum. ABA was eluted

from the column with 1 ml of 80% methanol containing

1% acetic acid and dried by speed vacuum (Eppendorf

VacufugeTM, Brinkmann Instruments, Inc., Canada). High-

performance liquid chromatography (HPLC) and mass

spectrometry (MS) were used to quantify the abscisic acid

(ABA) (Ross and others 2004).

ABA Application

A racemic mixture of (+/-) ABA (Sigma Chemical, St.

Louis, MO) was applied at the prestolon initiation stage

(5 weeks of growth of the grafted cuttings) in all geno-

types. ABA was applied in increasing dose concentrations

every 3 days to reach a final concentration of 75 lM.

Synthetic (+/-) ABA was dissolved in a small amount of

NAOH (1 N) diluted to the desired concentration with

distilled water. The pH of the solution was adjusted to 6.5

by adding HCl or NaOH. An aliquot of 150 ml of the ABA

solution was applied to the plants as a root drench between

9:00 and 10.00 a.m. Control plants were watered with

distilled water and NaOH (1 N) with the pH adjusted to 6.5.

Because solutions were circulated back to individual tanks,

the water of the tanks was changed after 2 days to prevent

the accumulation of ABA. The salt stress treatments were

started 1 week after the final ABA application. The salt

stress was applied as above. Treatments were arranged as a

factorial experiment with a RCBD (2 9 7) with four rep-

lications per treatment and three plants per replication.

Pooled analysis of variance (ANOVA) for factorial RCBD

was performed by the general linear model (GLM) in SAS

software (SAS Inc., Chicago, IL) and means of lines were

compared using LSD.

NMR Imaging

One sensitive [ABA(-) deficient mutant] and resistant

(9506) genotype and their graft combinations [9506/

ABA(-) and ABA(-)/9506] were used to examine the rate

and direction of water flow in the stem. All plants were

imaged at the end of ABA treatment and after 2 weeks of

salt stress. NMR imaging of ABA-treated and nontreated

shoots was performed with a Siemens Magnetum Sym-

phony 1.5-Tesla whole-body medical scanner. A flow-

sensitive sequence was acquired in a transverse plane.

Results

Leaf Necrosis and Chlorophyll Content

Leaf necrosis of the ABA(+) and 9506 resistant genotype

was lower than the ABA(-) in both the unacclimated and
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acclimated plants after salt stress (Figure 1). When accli-

mated, the 9506 genotype expressed the lowest leaf necrosis

compared to the ABA(-) and ABA(+) types after salt stress.

However, the impact of the rootstock itself, independent of

acclimation, was more significant on inducing salt tolerance

in the scion when 9506 was used as a rootstock of the rela-

tively salt-sensitive scions: the ABA(-) mutant and the

ABA(+) sibling [ABA(-)/9506 and ABA(+)/9506 graft

combinations] (Figure 1). Salt acclimation also reduced the

proportion of shoots with injured leaves in these graft com-

binations. In addition, salt acclimation decreased leaf

necrosis in 9506 resistant scions in the reciprocal 9506/

ABA(+) and 9506/ABA(-) graft combinations to the same

extent as the resistant 9506 plants alone.

ABA application significantly reduced leaf necrosis in

all genotypes except the 9506 resistant line (Figure 2).

Grafting the ABA(-) onto the resistant 9506 rootstock in

combination with exogenous ABA application decreased

leaf necrosis beyond grafting alone. This response was not

observed for the ABA(+)/9506 grafting combination.

Grafting onto the 9506 resistant rootstock also increased

greenness (chlorophyll content) of scions of the ABA(-)

mutant after salt stress (Figure 3). Salt acclimation improved

this parameter in nongrafted plants of the ABA(-) mutant.

ABA Levels

Concentrations of ABA in acclimated plants were 33%

[ABA(-) mutant] to 44% (9506 genotype) higher than the

ABA levels in unacclimated plants at the end of salt stress

treatment (Figure 4). The ABA(-) mutant had the lowest

ABA concentration but was not completely devoid of

ABA. Its ABA(+) sibling plants also had a lower ABA

concentration compared to the more salt-tolerant ‘Norland’

and the 9506 genotype. In unacclimated plants exposed to

salt stress, ‘Norland’ and the 9506 genotype had
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comparable leaf ABA concentrations, but with acclimation

the 9506 genotype had higher levels of ABA than

‘Norland.’

Plant Biomass

Under both unacclimated and acclimated conditions, using

9506 resistant as a scion increased root fresh and dry

weights of the ABA(-) mutant rootstock compared to

nongrafted ABA(-) mutants (Table 1). Correspondingly,

using the ABA(-) mutant as a scion significantly reduced

the root fresh and dry weights of 9506 resistant rootstocks

in both the salt-acclimated and unacclimated treatments.

The ABA(+) sibling as a scion increased root dry weight

of the 9506 resistant rootstock. Although the salt accli-

mation treatment had no effect on root fresh weights of the

ABA(-) mutant, ABA(-)/9506, and 9506 resistant geno-

types, salt acclimation treatment reduced root fresh weights

in the other genotypes and graft combinations tested. The

highest root weights were observed in the 9506 genotype

and the ABA(+)/9506 graft combination under both salt-

acclimated and unacclimated conditions.

Grafting salt-sensitive genotypes onto the 9506 salt-

tolerant rootstock resulted in increased shoot fresh and dry

weights of ABA(-)/9506 and ABA(+)/9506 graft combi-

nations relative to nongrafted plants (Table 2).

Correspondingly, the reciprocal grafts of the 9506/ABA(-)

and 9506/ABA(+) sibling reduced shoot fresh weight of

the 9506 resistant scions. The salt-acclimation treatments

reduced shoot fresh weight in all genotypes and graft

combinations tested except in the ABA(-), ABA(-)/9506

and the ABA(+)/9506 combination in which there were no

change (Table 2).

Stem Diameter

Grafting had a significant impact on stem diameter under

salt stress (Table 3). Stem diameter of the ABA(-) mutant

scions grafted onto 9506 resistant rootstocks increased

relative to nongrafted plants under both the unacclimated

and salt-acclimation treatments (Table 3A). This enhanced

grafting response was observed only following salt accli-

mation in the ABA(+) normal scions on 9506 rootstocks.

The diameter of 9506 resistant scions did not change
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Table 1 Mean root fresh and dry weights and water content of salt-acclimated (75–100 mM NaCl) and unacclimated potato genotypes and their

graft combinations (scion/rootstock) measured after 2 weeks of salt stress (150–180 mM NaCl)

Treatments ABA(-) ABA(-)/9506 9506/ABA(-) 9506 9506/ABA(+) ABA(+)/9506 ABA(+)

Root fresh weight (g) Unacclimated 1.11 f 5.66 e 10.87 bc 14.07 a 9.76 c 14.53 a 8.65 cd

Salt acclimated 0.90 f 4.44 e 6.67 de 12.40 ab 5.66 e 10.75 bc 5.51 e

Root dry weight (g) Unacclimated 0.22 g 0.93 f 1.87 d 2.59 c 1.62 de 4.74 a 1.42 e

Salt acclimated 0.21 g 0.79 f 0.69 f 1.97 d 0.90 f 3.12 b 0.84 f

Root water content (%) Unacclimated 80.00 b 83.10 ab 82.12 ab 81.40 b 83.21 ab 83.44 ab 67.24 c

Salt acclimated 70.88 c 81.44 b 89.43 a 83.76 ab 83.27 ab 84.58 ab 70.49 c

Means for each parameter with the same letters are not significantly different (LSD = 0.05). ABA(-), ABA-deficient mutant; ABA(+), ABA-

normal sibling; 9506, salt stress resistant
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except when grafted onto the ABA(+) sibling rootstock, in

which case the diameter of 9506 scions was significantly

reduced under unacclimated conditions.

As a rootstock, the 9506 stem diameter was not affected by

grafting with scions of the ABA(+) sibling; however, the

ABA(-) mutant scion reduced 9506 rootstock diameter under

both unacclimated and acclimated conditions (Table 3B).

Water Status

When the 9506 resistant genotype was used as a scion onto

either the ABA(-) mutant or ABA(+) sibling, root water

content significantly increased under salt acclimation

(Table 1). Salt acclimation alone increased shoot water

content of the ABA(-) and ABA(+) sibling after salt

stress (Table 2). Under both unacclimated and salt-accli-

mation conditions, the 9506 resistant rootstock increased

shoot water content in the ABA(-)/9506 graft combination

compared to nongrafted ABA(-) mutants (Table 2). In the

ABA(+)/9506 graft combination, this 9506 rootstock

effect was observed only under unacclimated conditions.

In a similar response to shoot water content, salt accli-

mation alone also significantly increased stem water

content of the ABA(-) and ABA(+) (Table 4). Even in the

absence of acclimation, having 9506 as a rootstock

increased stem water content in scions of the ABA(-) and

ABA(+) compared to nongrafted plants.

The effect of the 9506 rootstock on increasing leaf water

content of the ABA(-) mutant scion under both acclima-

tion and unacclimated treatments was significant (Table 4).

Exogenous ABA application did not influence leaf water

content in the absence of stress (Table 5). However, after

stress, leaf water content was significantly increased in

ABA-treated plants of ABA(-), ABA(-)/9506, ABA(+)/

9506, and ABA(+) grafted plants.

Leaf Osmotic Potential

Without acclimation, the 9506 resistant genotype as a

rootstock in itself induced a more negative leaf osmotic

potential of ABA(-) mutant scions but had no effect on

scions of the ABA(+) sibling (Table 4). Subsequent

acclimation (Table 4) and exogenous ABA application

(Table 5) of the ABA(-), ABA(+), ABA(-)/9506, and

ABA(+)/9506 induced a less negative leaf osmotic

potential under salt stress.

Leaf Stomatal Conductivity and Water Flow

Salt acclimation increased leaf stomatal conductivity of all

genotypes and graft combinations during subsequent salt

stress except for nongrafted plants of the ABA(-) mutant

Table 2 Mean shoot fresh and dry weights and water content of salt-acclimated (75–100 mM NaCl) and unacclimated potato genotypes and

their graft combinations (scion/rootstock) measured after 2 weeks of salt stress (150–180 mM NaCl)

Treatments ABA(-) ABA(-)/

9506

9506/

ABA(-)

9506 9506/

ABA(+)

ABA(+)/

9506

ABA(+)

Shoot fresh weight (g) Unacclimated 18.76 i 42.83 h 109.70 d 177.75 a 123.08 c 136.12 b 91.53 e

Salt acclimated 16.06 i 44.96 h 80.32 f 124.59 c 60.61 g 141.75 b 57.08 g

Shoot dry weight (g) Unacclimated 3.53 e 17.58 c 18.28 c 28.02 b 17.61 c 38.73 a 15.80 c

Salt acclimated 3.02 e 11.29 d 10.79 d 19.06 c 11.69 d 28.96 b 9.76 d

Shoot water content (%) Unacclimated 59.26 f 81.18 bcd 83.25 abcd 84.22 abcd 85.70 ab 82.42 abcd 71.53 e

Salt acclimated 74.20 e 81.26 bcd 86.55 a 84.70 abc 80.87 cd 82.92 abcd 79.51 d

Means for each parameter with the same letters are not significantly different (LSD = 0.05). ABA(-), ABA-deficient mutant; ABA(+), ABA-

normal sibling; 9506, salt stress resistant

Table 3 Mean stem diameter of salt-acclimated (75–100 mM NaCl) and unacclimated potato genotypes and their graft combinations (scion/

rootstock) measured after 2 weeks of salt stress (150–180 mM NaCl)

Stem diameter Treatments ABA(-) ABA(-)/

9506

9506/

ABA(-)

9506 9506/

ABA(+)

ABA(+)/

9506

ABA(+)

(A) Above graft union (mm) Unacclimated 1.75 e 4.16 d 5.83 abc 6.83 ab 5.08 cd 5.33 bcd 5.16 cd

Salt acclimated 1.33 e 4.16 d 5.83 abc 6.00 abc 5.00 cd 7.16 a 4.00 d

(B) Below graft union (mm) Unacclimated 1.66 g 4.00 def 4.00 def 5.16 abc 3.50 ef 5.83 a 4.66 bcd

Salt acclimated 1.08 g 3.33 f 3.83 def 5.33 ab 4.33 cde 5.50 ab 4.33 cde

Means for each parameter with the same letters are not significantly different (LSD = 0.05). 9506, salt stress resistant; ABA(-), ABA-deficient

mutant; ABA(+), ABA-normal sibling
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and the 9506/ABA(+) sibling combination (Table 4).

Grafts using 9506 resistant as a rootstock increased leaf

stomatal conductivity in ABA(-) and ABA(+) scions,

however, only under salt acclimation. Similarly, ABA

application increased leaf stomatal conductivity before

stress in the ABA(-), ABA(-)/9506, 9506/ABA(+), and

ABA(+)/9506 grafted plants (Table 6). Moreover, after

stress, all ABA treatments induced higher stomatal con-

ductivity compared to the control in all plants.

Exogenous ABA application on ABA(-) and ABA(-)/

9506 grafted plants significantly altered water flow from a

net downward flow to a more positive upward flow

(Table 7). This response was not observed through grafting

of ABA(-) onto the 9506 rootstock alone.

Discussion

Both scions and rootstocks of various crops were shown

to influence salinity tolerance with the majority of rese-

arch focused on rootstocks (Schmutz and Lüdders 1999;

Santa-Cruz 2001; Fernández-Garcı́a and others 2002; Chen

and others 2003). This response was most pronounced using

halophytic plant rootstocks (Chen and others 2003; Estañ

and others 2005; Shaterian and others 2005a). In our present

study on potato, the beneficial influence of the ABA-accu-

mulating salt-resistant 9506 line as both a rootstock and a

scion on salt tolerance of the otherwise salt-sensitive geno-

types was examined. The subsequent impact of ABA and

translocation of the acclimation response between rootstock

and scions was also observed.

Rootstock Effects

Fresh and dry matter accumulation in both the ABA(-)

line and its normal sibling scions were positively affected

by grafting onto rootstocks of the highly vigorous 9506

resistant line. This effect of grafting was consistent with

the work of Chen and others (2003) who reported that

shoot growth of ABA-deficient mutant tomato (flacca)

scions grafted onto ABA-normal rootstocks was superior to

growth of flacca grafted on its own rootstock, regardless of

Table 4 Mean leaf water content, leaf osmotic potential, stem water content, and leaf stomatal conductivity of salt-acclimated (75–100 mM

NaCl) and unacclimated potato genotypes and their graft combinations (scion/rootstock) measured after 2 weeks of salt stress (150–180 mM

NaCl)

Treatments ABA(-) ABA(-)/9506 9506/ABA(-) 9506 9506/ABA(+) ABA(+)/9506 ABA(+)

Leaf water content (%) Unacclimated 75.13 cd 81.75 ab 78.77 abc 83.26 ab 81.57 abc 79.72 abc 83.63 a

Salt acclimated 70.36 d 77.51 abc 77.59 abc 82.86 ab 78.31 abc 76.83 bcd 80.25 abc

Leaf osmotic

potential (Ws = MPa)

Unacclimated -2.06 f -2.38 g -1.29 abc -1.36 abc -1.51 cd -1.63 de -1.74 e

Salt acclimated -1.81 e -1.48 bcd -1.28 ab -1.27 ab -1.41 abcd -1.31 abc -1.22 a

Stem water content (%) Unacclimated 56.92 e 70.11 d 76.54 abcd 76.96 abc 76.26 abcd 79.81 ab 61.35 e

Salt acclimated 71.59 cd 70.81 cd 73.66 bcd 76.46 abcd 76.23 abcd 78.44 ab 81.23 a

Leaf stomatal

conductivity

(lm-2 s-1)

Unacclimated 0.011 ef 0.010 f 0.115 b 0.115 b 0.118 b 0.021 e 0.018 ef

Salt acclimated 0.015 ef 0.058 c 0.135 a 0.130 a 0.125 ab 0.051 c 0.035 d

Means for each parameter with the same letters are not significantly different (LSD = 0.05). 9506, salt stress resistant; ABA(-), ABA-deficient

mutant; ABA(+), ABA-normal sibling

Table 5 Mean leaf water content and leaf osmotic potential of ABA-treated and nontreated potato genotypes before and after 2 weeks of salt

stress (150–180 mM NaCl)

Time ABA

(lM)

ABA(-) ABA(-)/

9506

9506/

ABA(-)

9506 9506/

ABA(+)

ABA(+)/

9506

ABA(+)

Leaf water content

(%)

Before

stress

0 74.12 a 76.67 a 80.22 a 83.61 a 74.01 a 77.24 a 83.09 a

75 79.90 a 81.07 a 79.32 a 78.56 a 78.46 a 83.73 a 82.55 a

After stress 0 34.41 f 42.41 f 72.25 bcde 76.42 abc 70.07 cde 70.39 cde 70.27 cde

75 65.92 e 79.75 ab 74.95 abcd 76.68 abc 66.58 de 81.75 a 82.57 a

Leaf osmotic

potential

(Ws = MPa)

Before

stress

0 -1.50 d -1.16 c -1.05 abc -0.94 abc -1.09 bc -1.01 abc -1.00 abc

75 -0.99 abc -0.82 a -0.89 ab -0.95 abc -0.98 abc -0.88 ab -0.97 abc

After stress 0 -2.95 g -2.42 f -1.13 ab -1.47 cd -1.22 bc -2.56 f -1.97 e

75 -1.80 e -1.51 d -0.95 a -1.48 cd -1.31 bcd -1.51 d -1.48 cd

Means for each parameter with the same letters are not significantly different (LSD = 0.05). 9506, salt stress resistant; ABA(-), ABA-deficient

mutant; ABA(+), ABA-normal sibling
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the salinity level. They attributed this improvement in

growth to the supply of ABA from the rootstock to the

shoots. Stress-induced ABA produced in the rootstock

improved stomatal control in flacca scions grafted on

ABA-normal rootstock and resulted in better water status

and enhanced growth (Chen and others 2003). Phenotype

reversion of ABA-deficient shoots on ABA-normal wild-

type roots was reported with the graft of tomato (Cornish

and Zeevaart 1988) and sunflower (Fambrini and others

1995). Shoot dry weight was also significantly affected by

root genotype in grafted faba bean (Vicia faba) (Barbera

and others 1998). Furthermore, grafting onto the salt-tol-

erant 9506 rootstock increased stomatal conductivity of

scions of both sensitive potato lines in this trial. The

increase in dry mass accumulation in these two sensitive

genotypes might be due to this increase in stomatal con-

ductivity. The distinct consequence of grafting and

rootstock effect on increasing stomatal conductivity has

also been evidenced in tomato (Fernández-Garcı́a and

others 2004b). Holbrook and others (2002) also indicated

that root signals controlled stomatal conductance in tomato

through changes in apoplastic ABA levels in leaves.

In addition, the higher leaf and shoot water content

characteristic of the 9506 resistant rootstock was trans-

missible to scions of the ABA(-) mutant. This change was

accompanied by increased leaf osmotic potential of the

ABA(-) mutant scion in the ABA(-)/9506 graft combi-

nation. Graft unions are not a physical barrier to water

transport from rootstock to scion (Fernández-Garcı́a and

others 2002) and, in fact, they are structurally and chemi-

cally greatly functional in herbaceous plants like tomato

(Fernández-Garcı́a and others 2004a). A nondestructive

water flow in grafted potato plant shoot systems grown

under normal and salt stress conditions was affirmed

through our microimaging NMR studies. The effect of

rootstock on increased leaf water content (Santa-Cruz and

others 2001, 2002; Estañ and others 2005) and increased

leaf osmotic potential of the scion was more significant,

particularly at high-salinity levels (Santa-Cruz and others

2002). Shoot water content was enhanced when scions of

the ABA(-) mutant of tomato (flacca) were grafted onto

the wild-type rootstocks relative to grafting flacca scions

on its own rootstock (Chen and others 2002b). The increase

in water content (Fricke and others 2004, 2006) and leaf

osmotic potential (Wilkinson and Davies 1997; Zhu and

others 2005) appeared to be related to ABA accumulation

in the leaf. The increase in water content will increase

tissue succulence and, under saline conditions, may facil-

itate the dilution of salt within the tissue (Ottow and others

2005). Cherian and Reddy (2000) reported the large

increase in fresh weight was mainly due to plant water

content. Shoot dry weight, total dry weight, and plant water

content were also positively correlated (Basal and others

2006). Plant biomass is the most widely used graft index in

defining salt stress tolerance. Higher fresh matter accu-

mulation (Santa-Cruz and others 2002; Chen and others

2003) and dry matter accumulation in grafted relative

to nongrafted plants was reported in tomato/tomato

(Fernández-Garcı́a and others 2004a) and tobacco/tomato

(Ruiz and others 2005) watermelon (Colla and others

2006).

Chlorophyll content, a readily measured objective indi-

cator of leaf health and growth potential (Percival 2005) as

indicated by leaf greenness, was also explored in this study.

Chlorophyll content showed varying responses to the salt

stress and grafting treatments. Grafting of ABA(-) scions

Table 7 Mean shoot water flow (ll h-1) of ABA-treated and non-

treated grafted and nongrafted potato genotypes before and after

3 weeks of salt stress (150–180 mM NaCl)

ABA(-) ABA(-)/9506 9506 9506/ABA(-)

Before salt stress

0 lM ABA -0.35 d -0.41 d +0.07 b -0.32 cd

75 lM ABA -0.07 bc +0.44 a +0.38 a +0.01 b

After salt stress

0 lM ABA -0.27 cd -0.34 d +0.05 a -0.19 bcd

75 lM ABA -0.03 ab -0.09 abc +0.02 ab -0.02 ab

+ = :, - = ;

Means for each parameter with the same letters are not significantly

different (LSD = 0.05). 9506, salt stress resistant; ABA(-), ABA-

deficient mutant

Table 6 Mean leaf stomatal conductivity (SC) (lm-2 s-1) of ABA-treated and nontreated potato genotypes before and after 2 weeks of salt

stress (150–180 mM NaCl)

ABA (lM) ABA(-) ABA(-)/9506 9506/ABA(-) 9506 9506/ABA(+) ABA(+)/9506 ABA(+)

Before stress 0 0.09 def 0.03 g 0.13 bcd 0.11 cdef 0.09 def 0.08 f 0.11 cdef

75 0.19 a 0.15 abc 0.17 ab 0.13 bcd 0.16 ab 0.16 ab 0.14 abc

After stress 0 0.01 f 0.01 f 0.04 c 0.03 d 0.03 d 0.01 f 0.02 e

75 0.04 c 0.04 c 0.05 b 0.08 a 0.04 c 0.05 b 0.05 b

Means for each parameter with the same letters are not significantly different (LSD = 0.05). 9506, salt stress resistant, ABA(-), ABA-deficient

mutant, ABA(+), ABA-normal sibling
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onto salt-resistant rootstock increased chlorophyll content

of the scion following 2 weeks of exposure to salt stress.

These results are in agreement with those of Romero and

others (1997) and Fernández-Garcı́a and others (2002) who

demonstrated that under saline conditions in grafted plants,

leaf pigments and chlorophyll content were determined by

the genotype used as the rootstock. Using the salt-sensitive

ABA(-) line as a rootstock reduced chlorophyll concen-

trations of the stress-resistant 9506 scion. This might be

due to low vigor of root systems in the uptake and trans-

location of ions, photosynthates, and plant hormones to the

scions (Lee and Oda 2003) or to the loss of chlorophyll

content of salt-susceptible genotypes by increasing salt

stress (Mandal and Singh 2001).

Scion Effects

Although much work has been done on rootstock-to-scion

response, fewer reports are available on scion-to-rootstock

effects. Because potato is a tuberous crop, the influence of

scions on the rootstock is of obvious importance to this

economic commodity. Our study in potato indicates a

significant influence of the scion on the rootstock.

The resistant 9506 genotype as a scion had a positive

impact on increasing biomass of the root. Relative to

nongrafted plants, the biomass of the ABA(-) mutant and

ABA(+) sibling roots were elevated by grafting onto the

9506 resistant scions. This finding might be due to a higher

photosynthesis rate by the more vigorous, salt-tolerant

9506 scions, leading to greater potential for partitioning of

assimilates to the rootstock (Chen and others 2003). Chen

and others (2003) also indicated that the scion determines

the growth rate of grafted plants and that growth was

positively correlated with shoot ABA concentration. In our

study, when the ABA(-) mutant was grafted onto the 9506

resistant rootstock, the reduced root growth of 9506

resistant rootstock might also be due to a low photosyn-

thetic rate of the scion and reduced production and

distribution of photosynthate. This might also explain the

increased stem diameter of ABA(-) rootstocks grafted

with 9506 resistant scions.

The scion may be sending a hormonal signal to the root

system (Holbrook and others 2002). Holbrook and others

(2002) showed that the control of shoot physiology under

water stress resides in the shoots rather than the roots in

reciprocal grafts of wild-type and ABA(-) mutants of

tomato. Dunlap and Binzel (1996) reported that ABA

levels were higher in leaves than roots. This may be par-

ticularly significant in light of our findings of greater

endogenous ABA levels in the 9506 genotype and, in

particular, the subsequent induction of higher ABA levels

in the 9506 resistant line compared to all other genotypes

after acclimation and salt stress. A large proportion of ABA

(70%) transported in the xylem originated in the shoot and

was subsequently recycled back to the shoot (Chen and

others 2002b). Chen and others (2002b) believed that an

unknown ‘‘phenotype reversion factor’’ (PRF) produced in

wild-type shoots rather than roots determines phenotype

reversion of flacca in the Ws/Fr combination. They also

found a significant linear relationship between biomass

production and ABA levels in the scion.

Acclimation

Differential plant responses like dry matter production,

stem diameter, water status, hormonal balance, and other

physiologic and biochemical reactions are prime indicators

of salinity endurance. Our study showed that alterations

were induced in the rootstock by acclimation and in some

cases transferred to the scion. Reduction of leaf necrosis,

a sensitive indicator of salt tolerance in grafted plants

(Wahome and others 2000, 2001), was transmitted to the

scions grafted onto salt-tolerant rootstocks by salt-accli-

mation treatment during a subsequent salt stress event.

Uniquely, our study further indicates that acclimation of

resistant scions can transfer responses to the rootstock.

Acclimated 9506 resistant scions increased both root bio-

mass and stem diameter of its ABA(-) rootstock. Biomass

of shoots and roots of plants grafted with the 9506 resistant

genotype increased in comparison with nongrafted plants,

and the enhanced salt tolerance might be attributed to our

observed higher ABA levels in this genotype both before

and after acclimation.

Acclimation itself plays a role, and when nongrafted

ABA(-) mutant plants were salt-acclimated, leaf green-

ness increased after subsequent salt stress. This is

consistent with Djanaguiraman and others (2006) who

found that rice plants that had been gradually salt-treated

had a higher chlorophyll content than control plants. The

salt-acclimation treatment on potato genotypes reduced

shoot dry weight accumulation compared to nontreated

plants. Similarly, Silveira and others (2001) showed that

treatment of cowpea with 50 mM NaCl for 8 days resulted

in a 25% reduction in shoot dry mass compared with

control plants. Compared with the control plants, NaCl-

adapted Sorghum plants also had reduced shoot dry weight

(Amzallag and others 1990b; Amzallag 1996; de Lacerda

and others 2001). In soybean, leaf dry weights were

reduced slightly to severely by salt pretreatment, depending

on the salt concentration used during the pretreatment

(Umezawa and others 2000). Shoot dry weight in bean

(Phaseoulus vulgaris) (Bayuelo-Jiménez and others 2003)

was also reduced.

Salt acclimation increased stem water content in the

nongrafted ABA(-) mutant and its normal sibling.

Ramoliya and Pandey (2003) found that stems in Cordia
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rothii were the most salt-tolerant tissues, followed by

leaves. This might be due to the high volume of water

stored in the stem enabling a dilution effect of salt ions.

Accumulation of salts in the shoots and prevention of

absorption by photosynthetic and actively growing leaves

is another salt-tolerance mechanism used by many plants

(Reddy and others 1992).

Salt acclimated potato genotypes had higher leaf sto-

matal conductivity and leaf water content after 2 weeks of

salt stress relative to unacclimated potato genotypes.

Higher stomatal conductance in salt-acclimated plants has

also been reported in rice (Djanaguiraman and others

2006). The increase in leaf osmotic potential in the non-

grafted ABA(-) mutant, ABA(-)/9506, and ABA(+)/

9506 under salt acclimation was also similar to sunflower

(Steduto and others 2000).

ABA-mediated Responses

ABA accumulated to varying extents in all genotypes in

our study and also varied with acclimation treatment.

Acclimation induced significantly higher ABA levels than

unacclimated treatments after exposure to salt stress. Salt

acclimation-induced accumulation of endogenous ABA has

not been previously reported in potato, however it has been

examined in salt stressed potato (Pruvot and others 1996)

and other crops including rice (Asch and others 1995)

(60 mM NaCl), tomato (Dunlap and Binzel 1996; Mul-

holland and others 2003) (50 mM NaCl), Brassica (He and

Cramer 1996; Verslues and others 2006) (85 mM NaCl),

bean (Sibole and others 1998) (75 mM NaCl), soybean

(Umezawa and others 2001) (50 mM NaCl), barley (Jia

and others 2002) (100 mM NaCl), and Arabidopsis ABA

mutants (Cramer 2002) (80 mM NaCl). The ranking of salt

stress resistance after acclimation followed the ranking for

endogenous ABA: ABA(-) mutant \ ABA(+) sibling \
‘Norland’ B 9506. Salt-tolerant genotypes maintained

higher concentrations of ABA than salt-sensitive geno-

types. ‘Norland’ and the 9506 genotype had similar ABA

profiles in unacclimated plants after salt stress; however,

acclimation induced higher levels of ABA in the more salt-

tolerant 9506 genotype (76% increase) than ‘Norland’

(17% increase).

As expected, exogenously applied ABA significantly

alleviated leaf necrosis after salt stress exposure in the

genotypes that accumulated less ABA, in particular the

ABA(-) mutant. However, additional exogenous ABA did

not improve leaf necrosis, leaf water content, or leaf

osmotic potential in the salt stress-resistant 9506 genotype.

This genotype had the highest level of endogenous ABA

induced after salt stress. As a rootstock, the 9506 line also

had the most significant impact on enhancing scion salt

stress resistance in ABA(-) and ABA(+) grafted plants.

Although ABA was not measured in grafted plants after

salt stress, other work has shown a distinct translocation of

signal from the root to the shoot inducing ABA biosyn-

thesis in the leaves. Even though flacca roots had some

endogenous ABA, the root had difficulty transporting ABA

to the shoots (Sagi and others 1999). Under stress condi-

tions, the shoots and roots of the mutant were unable to

accumulate ABA (Grillo and others 1995; Bray and others

1999). In research with the ABA-deficient mutant of

tomato, Flacca (Fs), Chen and others (2002b) showed that

when it was grafted on the ABA-normal rootstock (Wr) to

yield Fs/Wr, the scions exhibited higher ABA content,

lower transpiration rate, and higher water content than

when the mutant was grafted on its own rootstock (Fs/Fr).

Using the ABA-deficient mutant of tomato (sitiens and

flacca) with their near-isogenic ABA-normal types in three

other grafting experiments (reciprocal grafting, split sys-

tem, and grafting under drought stress), Holbrook and

others (2002) concluded that a chemical signal in the root

led to a change in apoplastic ABA levels within the scions

to cause stomatal closure. To study the effect of rootstock

on salt stress tolerance, a grafting experiment with three

potato genotypes—an early-maturing salt-sensitive (EMS),

an early-maturing salt-tolerant (EMT), and a late-maturing

salt-tolerant (LMT) was performed (Shaterian and others

2005a). Salt tolerance of the EMS scion increased when

grafted on the LMT rootstock as opposed to what happened

when grafted on the EMT rootstock. Grafting of the EMS

genotype on the LMT rootstock also resulted in a more

positive leaf osmotic potential than grafting on the EMT

rootstock.

The precise mechanism of ABA-enhanced salt stress

resistance is not clear but may be regulated by stomatal

opening during salt stress, enabling more water uptake into

the leaves and shoots. Direction of water flow was altered

to a more net upward flow under our ABA treatment. This

response is consistent with the observed increase in sto-

matal conductance. NMR studies have demonstrated an

interrelationship between transpiration rate and calculated

water rates (Kuchenbrod and others 1996; Köckenberger

and others 1997). Magnetic resonance spectrometry (Peuke

and others 2001) confirmed that greater water loss from

leaves was compensated for by a greater water supply via

the xylem. In 2005, using NMR imaging Velikanov and

Belova (2005), showed that exogenous ABA (100 lM)

also increased water permeability of the vacuolar symplast

in the root cells of maize.

Based on our grafting studies and ABA treatments, salt

tolerance was controlled by both root and shoot factors.

The enhanced salt tolerance of ABA(-)/9506 resistant

genotype and ABA(+)/9506 resistant genotype under salt

stress relative to the ABA(-) mutant and ABA(+) sibling

suggested that root parameters may represent a good
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criterion for evaluating plant responses to salt stress. The

9506 resistant genotype as a rootstock seemed to increase

the salt stress resistance of sensitive scions by enhancing

water content possibly via increased stem diameter, leaf

water content, leaf osmotic potential, leaf stomatal con-

ductivity, and positive upward water flow, mediated by

ABA. Assessment of endogenous ABA levels in potato

genotypes as a rapid screening tool for salt stress resis-

tance should be further explored. A distinct scion-to-

rootstock effect was also shown by our studies and has a

positive impact for increasing commercial potato crop

tolerance under available mechanized grafting systems.

Further observations on performance of grafted material

under field conditions are required to verify these results.
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